Adrenergic regulation of GABA release from presynaptic terminals in rat cerebral cortex.

نویسنده

  • Masanori Terakado
چکیده

The α1-adrenoceptor agonist phenylephrine and the β-adrenoceptor agonist isoproterenol have opposite effects on evoked EPSPs (eEPSPs) in the cerebral cortex. The suppressive effects of phenylephrine on eEPSPs are mediated by modulation of postsynaptic glutamate receptors, whereas enhancement of eEPSPs by isoproterenol is due to facilitation of glutamate release from presynaptic terminals. The present study used whole-cell patch-clamp recordings from layer V pyramidal neurons in visuocortical slice preparations to assess the effects of phenylephrine and isoproterenol on the release probability of γ-aminobutyric acid (GABA). The present study recorded evoked inhibitory postsynaptic potentials (eIPSCs) by repetitive electrical stimulation (duration, 100 μs; 10 stimuli at 33 Hz) and miniature IPSCs (mIPSCs). The effects of phenylephrine (100 μM) depended on the amplitude of eIPSCs: phenylephrine decreased the paired-pulse ratios (PPRs) of eIPSCs with smaller amplitudes (<~600 pA) but increased PPRs of eIPSCs with larger amplitude. Phenylephrine also exhibited amplitude-dependent modulation of mIPSCs, i.e., an increase in the frequency of smaller mIPSC events (<~20 pA) and a decrease in the frequency of larger events. These findings suggest that α1-adrenoceptor activation facilitates GABA release from a subpopulation of GABAergic terminals that induce smaller-amplitude IPSCs in postsynaptic neurons. In contrast, isoproterenol (100 μM) consistently decreased the PPR of eIPSCs and increased the frequency of mIPSCs, suggesting that presynaptic β-adrenoceptors increase release probability from most GABAergic terminals. The complexity of adrenoceptor modulations in GABAergic synaptic transmission by α1-adrenoceptor and β-adrenoceptor activation may be due to the presence of pleiotropic subtypes of GABAergic interneurons in the cerebral cortex.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Actions and release characteristics of secretin in the rat cerebellum

Secretin, a peptide hormone of the gastrointestinal system, has been implicated in the etiology of autism. Our laboratory previously demonstrated the expression of secretin and its receptors in specific central neurons, and found for the first time that secretin is neuroactive in the cerebellum. We showed that bath application of secretin facilitated the release of GABA from terminals of basket...

متن کامل

Actions and release characteristics of secretin in the rat cerebellum

Secretin, a peptide hormone of the gastrointestinal system, has been implicated in the etiology of autism. Our laboratory previously demonstrated the expression of secretin and its receptors in specific central neurons, and found for the first time that secretin is neuroactive in the cerebellum. We showed that bath application of secretin facilitated the release of GABA from terminals of basket...

متن کامل

Kinetics of GABAB autoreceptor-mediated suppression of GABA release in rat insular cortex.

Release of GABA is controlled by presynaptic GABA receptor type B (GABA(B)) autoreceptors at GABAergic terminals. However, there is no direct evidence that GABA(B) autoreceptors are activated by GABA release from their own terminals, and precise profiles of GABA(B) autoreceptor-mediated suppression of GABA release remain unknown. To explore these issues, we performed multiple whole-cell, patch-...

متن کامل

Effect of Paraoxon on GABA Uptake by Rat Cerebral Cortex Synaptosomes

Background: It has been suggested that organophosphates may inhibit gamma-aminobutyric acid (GABA) metabolism in synaptosomal preparations. In the present investigation, we have assessed the interaction between paraoxon and the GABA system at synaptic level. Methods: Synaptosomes were prepared from male Wistar rats (200-250 g). Cerebral cortex was dissected and homogenized, then centrifuged at ...

متن کامل

Inhibition of GABA release by presynaptic ionotropic GABA receptors in hippocampal CA3.

Vesicular transmitter release can be regulated by transmitter-gated ion channels at presynaptic axon terminals. The central inhibitory transmitter GABA acts on such presynaptic ionotropic receptors in various cells, including inhibitory interneurons. Here we report that GABA-mediated postsynaptic inhibitory currents in CA3 pyramidal cells of rat hippocampal slices are suppressed by agonists of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of oral science

دوره 56 1  شماره 

صفحات  -

تاریخ انتشار 2014